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Perturbation theory of super-radiance 
11. Cooperative and non-cooperative level shifts 

R Saunders and R K Bullough 
Department of Mathematics, University of Manchester Institute of Science and Technology, 
Manchester M60 lQD,  UK 

Received 22 November 1972, in final form 7 March 1973 

Abstract. We extend the perturbation theory of super-radiant emission to derive a number 
of results on the level shifts of N atom systems. These also divide into ‘coherent’ and 
‘incoherent’ parts. The incoherent part divides further into a generalized Lamb shift which 
is not cooperative, and an interatomic term which is. The former proves to be the only shift 
which can depend on the presence of ambient free photons. These results for the generalized 
Lamb shift support the view that a dynamical neoclassical theory of the Lamb shift is 
unacceptable. The theory is compared with the pseudoboson theories of linear dielectrics. 
The pseudoboson theory of an inverted dielectric (the ‘amplifier’) should be intrinsically 
unstable unlike the pseudoboson theory of the refractive index which is concerned with 
the ‘attenuator’. 

1. Introduction 

In part I (Saunders and Bullough 1973, to be referred to as I) we showed that the radiation 
rates from extended samples prepared initially in the ‘simple’ Dicke states labelled by 
r,  m had natural coherent and incoherent parts rcoh and rinc. The label r is the co- 
operation number introduced by Dicke (1954): m = $ N +  - N - )  where N ,  are the 
numbers of two-level atoms in their upper (lower) states. Both the rates rcoh and rinc 
are cooperative but reduce substantially in extended systems. We also displayed 
comparable results for the ‘phased’ Dicke states labelled by r ,  m and a wavevector k, .  
We have checked these order e2  results for the radiation rates by calculating the complex 
energies of the system to this order. The real parts of these energies can also be separated 
into coherent and incoherent parts in a natural way; but only the shifts due to inter- 
actions between separated atoms cooperate. We indicate the results. 

2. The complex energy shifts 

For extended samples in simple Dicke states Jr, m )  we find the following generalization 
of the Feynman (1961) expression for the self-energy of the electron (compare also the 
all order in e2 result for the ground state energy of a molecular fluid given by Bullough 
1969) : 

x {(nk+l)(F(x,x’;w). ~ , (x ,x ’ ;~ ) -cc )+~ , (F (x ,x ’ ;  U ) .  ll+(x,x‘; w)-cc)}. (1) 
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In this expression k = UC- and nk is the occupation number for ambient photons with 
wavenumber k : for simplicity this is supposed to be isotropic, that is the same for all 
directions k .  The photon propagator F is given by equation (1) of I. The matter 
propagator TIT is the time-ordered propagator 

It applies to a system of N atoms each with an arbitrary number of levels : 
N 

p(x) = 1 p'%(x-x,), 
i = l  

the total dipole operator; [ I )  is the unperturbed state of energy E , ,  Is) is any one of the 
complete set of unperturbed states labelled by s and of energy E, ,  U,, h -  ' ( E ,  - EJ. 
As usual 6 is an infinitesimal of positive sign. 

There is a natural complex energy obtainable from ( 1 ) .  This is just one half of ( 1 )  
as it is written when the complex conjugates (cc's) in it are dropped. Then there is a 
natural radiation rate which is -2h- '  times the imaginary part of this shift. However, 
there is an ambiguity in the choice of imaginary parts of the integral : we can for example 
take Re F . ll; or -Re F* . TIT from the bracket multiplied by nk in (1). The correct 
choice is motivated by the conditions (a)  that we want a radiation rate, that is a rate of 
increase of photons (6) that the emission term in (nk + 1) increases the number (positive 
rate) and that the induced absorption term in nk decreases it (negative rate). The 
prescription above has this property as case (i) below, for example, shows. Thus we 
can identify the total imaginary part obtained this way as rfol, the total radiation rate 
when the atomic system is in the state 11). 

For N two-level atoms the uncoupled system is in general degenerate : for example, 
the set of N ,  = ( m + i N )  atom excitations is N ! / N +  ! N -  ! degenerate (observe 
N ,  + N -  = N ) .  Appropriate states for degenerate perturbation theory are the simple 
Dicke states Ir, m) for small samples and the phased Dicke states Ir, m ;  k )  for trans- 
lationally invariant systems. In what follows we shall investigate level shifts for both 
sets of states. Since we now restrict the calculation to two-level atom systems, 

N 
p(x) = exOs& a$)6(x - x i )  

i = l  

exactly as in equation (3) of I t .  
We find the following : 
(i) N atoms on the same site. The emission rate is 

rem = To(nks+ l ) ( r + m ) ( r - m +  l ) ,  ( 3 4  

the absorption rate is (rate of increase of photons) 

rabs = - ron,Jr  - m)(r  + m + 1) (36) 

and the total radiation rate is 

rlol = r o { 2 n k s m + ( r + m ) ( r - m +  l ) } .  ( 3 4  
If no free photons at frequency U, are available, rlol reduces to the spontaneous emission 

t Later we use the notation (1.3) for this, for example. 
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rate (1.9) ; if photons at frequency w ,  are available the spontaneous emission is coherent 
(that is cooperative) but the total of the induced processes is not. 

The (real) energy level shift is 

AE = -2mAEk (4a) 
where 

and AEB is the Bethe (1947) level shift 

providing the integral in o is cut off at the Compton frequency. The quantity AEL is 
the generalized Lamb shift for the two-level atom reported by Bullough and Caudrey 
(1971) obtained by rather different methods. It also agrees with the perturbation theory 
of Knight (1972). The result (4a) shows that the Lamb shift is not cooperative or coherent : 
in this it shows a significant difference from the spontaneous emission. 

(ii) Two atoms on different sites. In the Dicke states 11, & 1 )  the shifts are k2AEk. 
In the symmetric (+) and antisymmetric ( - )  Dicke states the shifts are respectively 

AE = Te2x~,ReF(xl,x2;o,):riri 

= ~ ~ k ~ e 2 x ~ , { j - l ( k , R ) U + ~ j - 3 ( k , R ) ( 3 f i f i -  U)> : ad .  ( 5 )  

In this R = x1 -x2  and fi is a unit vector along R :  the j, are spherical Bessel functions 
diverging as R-" at the origin. These results agree with those of Stephen (1964) even 
though nk, # 0 : the energy shift does not depend on the presence of free photons at this 
order in e2 and will not do so at higher orders as the discussion in (iii) below makes plain. 

Note that the single particle Lamb shifts have cancelled : these constitute the shift 
AE = 2mAEk of (i) with m = 0. The correct value of ( 5 )  when x1 = x2 is therefore zero 
and the limit x1 + x2 is not defined. In the physical situation overlap becomes important 
before x1 = x2.  

The radiation rates are 

( n k s + 1 ) ( ~ o f 2 e 2 x ~ , h - 1  Im F(x,,x2; o, ) : r id )  (6) 

from the Dicke state I1,l) to states )1 ,0)  and 10,O). The total rate when the atoms are 
in the state ( 1 , l )  is (nks+l )ro .  The rate from Il,O) to 11, - 1 )  is (6) with the positive 
sign. The rate from I1 ,O)  to ( 1 ,  1 )  is the positive sign in 

-nks(T0-t2e2x~,h-' Im F(xl,x2;os):riri). (7) 

The total radiation rate when theatoms are in the state ( 1 , O )  is just the bracket with the 
plus sign in (6): it does not depend on nk,.  The total radiation rate when the system is 
in the state 10,O) is just the bracket with the minus sign in ( 6 )  which does not depend 
on nks .  When nk, = 0, the rates are spontaneous rates downwards only and agree with 
(1.7). 

(iii) N atoms on different sites. There is a rate downwards which multiplies (1.7) 
by (nks+ 1); there is a rate upwards which multiplies this by -nk, with m also changed 
to -m.  These rates describe the Ar = 0 transitions. The rates (1.19) with Ar = t- 1 
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generalize in thesame way. The analysis intocoherent and incoherent parts is unchanged. 
In particular the radiation rate from the state I$N,+N) is precisely (nkS+ 1)NT,. 

The energy shifts are of considerable interest. A general result is that the shift of 
the Dicke state Ir, m )  with r = t N  is 

(+N+m)(+N- m+ I )+(+N+m+ I)(+N -m)  
AE = -+eZxi,( N 2  

x ( n2 Jv dx Jv, dx’g(R) Re F(x, x‘; w,) :dd - 2mAEk. 1 
AE; is the generalized Lamb shift given by (4b). Note that only this depends on the 
presence of free photons. Hence the interparticle propagator is precisely F(x, x’ ; w,) 
whether there are free photons or not. This result is to be expected since F is the Green 
function for the time Fourier transformed operator Maxwell wave equation and must 
be independent of the initial states (compare Bullough 1973, Q 1 ) :  on the other hand the 
operator self-field which is capable of yielding both the spontaneous emission and 
Lamb shift correctly is not carried by this photon propagator (cf Bullough 1973 and 
remarks by (26) below). 

Note also that the generalized Lamb shift is not cooperative whilst the shift depending 
on Re F certainly is. This cooperative shift vanishes for the top and bottom states 
1+N, k + N )  and is symmetric in m. The generalized Lamb shift is the only shift in the 
top and bottom states and is antisymmetric in m. In the limit in which all atoms occupy 
the same site the limit of the shift in terms of Re F is undefined and should be rejected 
as spurious as we noted already in case (ii) : the key point is that atoms cannot overlap 
and this is described in (8) by g ( R )  which vanishes as R + 0. 

On the other hand since Re F is long range and g(R) + 1 as R + cc it is necessary to 
split this shift into ‘coherent’ and ‘incoherent’ parts by splitting the integral in (8) as 
follows : 

n2 /,d. Jv, dx’g(R) Re F(x, x’ ; w,):dd 

= H ’ V J  (g(R)- 1 )  Re F(x, x’; w,):dd dR 

+ n2 Iv Jv, dx dx’ Re F(x, x‘ ; w,) :lid. (9) 

The first integral on the right side is obtained by appeal to the fact that its value does not 
depend on x except for a surface layer of points x within about a correlation distance 
of the surface of I/. This is the ‘incoherent’ shift. The remaining ‘coherent’ part depends 
explicitly on the form of I/: 

First of all the integral over x’ in the ‘coherent’ part double integral is undefined 
for points x’ close to x. It is therefore defined as the conditionally convergent integral 
obtained by extracting a small sphere of vanishingly small radius about x. The argument 
is already familiar from refractive index theory (Rosenfeld 1951, Born and Wolf 1959, 
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Bullough 1968). It follows that this integral is 

exp(ik,lx -x'l) 5 I/+ sV dx(VV + kfU):dli dx'. 
3 

The term $ T I /  is equivalent to the effect of a Lorentz dielectric cavity field and shifts 
the energy appropriately : we shall assign it to the 'incoherent' part of the shift for in 
this way we can make a comparison with refractive index theory in the linear regime. 

The double integral when evaluated for the slab of width c and axis normal to li, 
the direction of the atomic dipole x matrix elements, reduces to 

sin k,c - 47tV+ 47t I/- 
kSC 

(with the understanding that V = A c  and that the cross section is very large). The 
details of the calculations leading to both (10) and (1 1) are given in the appendix to this 
paper. With these results the total shift for the slab is therefore? 

(+N + m)(+N -m+ I )+  ()N - m + 1)()N - m) 

($N + m)($N + m - 1) + (+N - m - 1)($N -m) 

AE  = - -+e2xiS(  N 

- 
N(N - 1) 

1 (g(R) - 1) Re F(x, x' ; w,) : lid dR 

-2mAEk. (12) 

The cooperative part of the shift is extensive, that is of order N, only for m 2: 0. For 
m = 0 precisely 

1 (g(R)-1)Re F(x,x';w,):dddR s (13) 

with terms 0(1)  neglected. The cooperative part of the shift vanishes for m = f ) N  
as noted. For m = f $ N T  1 the cooperative shift is 0(1) whilst the Lamb shift is ex- 
tensive : 

s 1 (g(R)-l)ReF(x,x';o,):dddR 

f (N - 2)AEL. (14) 

The energy spacings fhw, (say) between the perturbed states l$N, f $ N f l )  and 
IfN, k i N )  are 

Tho:  = + h w , f 2 A E k - e  2 2  xos 

(g(R)-1)Re F(x,x';w,):dridR 

t Compare Friedberg et a/ (1971). 
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There is an analogous result for the spacing between the phased Dicke states 
IfN, + f N  - 1 ; k) and IiN ; + f N )  : 

BE = -?e xos 
( + N + m ) ( f N - m + l ) + ( i N - m + l ) ( f N - m )  

N 

($N + m) (fN + m - 1) + (fN - m - 1) ( i N  - m) 1 
i 
- 

N ( N  - 1) 

x - n + n  (g(R)- 1) Re F(x, x‘; o,) :ddcosk.  R dR (4: I 
+fnVh(e’x&)-’  Re {I& k , ) )  -2mAEb. 1 

The quantity I(k,  k,) is evaluated in the appendix to this paper by the methods used in 
refractive index theory : the region Vis taken to be the slab - i c  < z < f c  with k along 
the slab axis and d orthogonal to this. There is a difficulty associated with waves 
reflected from the surface z = i c  (when k is along the positive z axis) which is analysed 
in this appendix. Within a prescription deliberately chosen to eliminate reflected waves 
the real part of I(k, k,) proves to be given by 

4xnk,  4xnk,  sin c(k - k,) 
+nV2h(ex0,)-’  Re { I (k ,  k , ) )  = 

k - k ,  c (k-k,)’  

and this determines the magnitude of the coherent part of the level shift. In the case of 
a resonant pulse described by excitation by the Dicke state lr, m ;  k , )  the quantity (17) 
is, however, undefined and we then define it as its limit as k -+ k , .  In this case the 
coherent part of the shift vanishes since the limit of (17) does: it does not vanish if 
reflected waves are included, however, and the correction due to this can be deduced 
from the appendix: we ignore this correction here. With this understanding the shift 
(16) reduces to the incoherent shift there, and in particular the analogue of (15) for the 
energy spacings adjacent to the top and bottom states becomes 

(g(R)-  1) Re F(x, x’; w,):lid cos k, . R dR 

An essentially identical result can be obtained in linear refractive index theory as we 
now show. 

3. Connections with linear theory 

It is well known that linear refractive index theory is equivalent to assuming that ztoms 
behave as oscillators of natural frequencies equal to their excitation frequencies. These 
excitation frequencies are excitations from the ground state. The theory is equivalent 
to restricting the whole system of N atoms to single particle excitations. A linearly 
independent set of these N states can be labelled by distinct wavevectors k. These states 
are those created and annihilated by operators analogous to the operator of (1.22) 
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now normalized to create and annihilate normalized single atom excitations. These 
operators are 

We can suppose N so large that k can be chosen as any vector. The operators (19) satisfy 
the commutation relations 

2 N  
N , , 1  

[a+@), o-(k’)]  = - 1 exp{ -i(k-A’). xi)a$’ 

The expectation value in the Dicke states Ir, m )  has the ensemble average 

The expectation value in the Dicke state Ir, m ; k , )  has the same ensemble average and 
the result is independent of k, .  The right hand side of (21) is 0 ( 2 m / N )  in terms of the 
argument developed in I. For m = -4N + 1 the ensemble average of the expectation 
value of the commutator is - dkk, + O ( N -  ’). To this extent the a,(k)  are boson operators. 
Similarly for m = + N -  1 the a,(k) are boson operators; but note now that a-(k) 
(and not a+( - k ) )  creates a pseudoboson with momentum Zzk and this pseudoboson 
consists of one particle de-excitations taken with reference to the fully inverted state. 
There are thus at least two pseudoboson theories which are those in which transitions 
take place between the ground state IiN, - 4 N )  and states of one particle excitations 
or take place between the fully inverted state IiN, f N )  and states of one particle de- 
excitations. We shall call these pseudoboson theories for the ‘attenuator’ and for the 
‘amplifier’ respectively. Refractive index theory is normally concerned with the 
attenuator but can apparently be extended to include the amplifier. 

Since the usual refractive index theory is concerned with one particle excitations 
above the ground state we can expect that the shift of the resonance frequency in that 
theory will be close to or even identically equal to the frequency +o: in (18). There is 
however a significant difference between refractive index theory and the theory of the 
N atom system considered so far. The phased Dicke states ItN, -3N + 1 ; k )  are 
approximate eigenstates of the coupled system and are approximate normal modes for 
one particle excitations labelled by their wavevectors k. However within linear theory 
the exact normal modes of the coupled matter photon system are modes labelled by 
k of definite frequency w(k) determined by k .  In the case of a finite system of volume V 
an external field of wavenumber wc-’ excites a particular one of these modes with 
wavenumber m(w)oc- ’ : m(o)  is defined to be the refractive index and, since m(w)w = ck 
this is an implicit relation for w(k). At the same time the surface of Vplays a subtle role. 
It largely extinguishes the external field inside V according to the optical extinction 
theorem of Ewald (1912) and has the effect of refracting the wavevector inside Vaccording 
to Snell’s law. This spatially coherent behaviour has the effect of eliminating the 
coherent part of the shift in (16), that is the part depending on (17): indeed one should 
include the reflected wave in (17) (see appendix) and it then eliminates this also by 
generating the appropriate reflected waves at the surfaces of K In this theory a unique 
k is thus excited inside V by a system of waves with definite wavevectors k ,  outside V ;  
k is preserved therefore and the incoherent part of the shift contains the mode function 
exp(ik . x). 
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We find (cf Bullough 1968) that the refractive index m(w) satisfies the dispersion 
relation 

4nncr(o) 
1 - $nna(w) - na(w)R(w)' 

m 2 ( o )  - 1 = 

The quantity R(w) is a cluster expansion of which the leading terms have the form 

(s (g2(R) - 1 + n- '6(R))  exp(im(w)k, . R)BB : F(x, x' ; w) dR 

x B .  F(x, x'; w)  . F(x', x"; w )  . B dR dR' 

+CI(O) g,(R)B. F(x, x'; w)  . F(x', x ;  U ) .  B dR s 
g2(R) is the two-atom correlation function previously called g(R) and defined in (1.10); 
g3(R, R') is an analogous three-atom correlation function ; the vector k ,  has magnitude 
k, = wc-' and is in a direction determined by that of the wavevector of the external 
field. The quantity a(w) is the polarizability which for two-level atoms reduces to 

a(w) = 2eZx~,h-'o,(w3 -U')- ' .  (24) 

The form (24) allows us to rationalize (22) up to two-body correlations in the form 

8nnezx~,w,h- ' 
05 - w2 -$nne2x&w,h- ' - 2eZx~,w,h- 'nR(w)'  

m2(w)- 1 = 

As long as the shift is small enough the resonance occurs at 

01 N w,-$cne2x&h-' -e2x&h-'nR(w,) (26) 

which is then valid up to two-body correlations only. The expression (23) includes 
three-body correlations explicitly and has indeed been worked to all orders of correlation 
(Bullough and Hynne 1968, Bullough er a1 1968). Up to three-body correlation (23) 
diverges at w = w, because a(w) diverges there. Thus it is necessary to rationalize by 
an extra factor (of -0') and the shift (if this is small) can be obtained as the root of a 
quadratic in (0, -0). 

There is the difficulty that all the terms multiplying a(w) in (23) depend mildly on 
the surface of V :  this has a significant effect in the theory of fluorescence (Bullough and 
Hynne 1968, Bullough er a1 1968), but we shall ignore this awkward problem here. 
The resonance is in principle also complicated by the fact that R(w) depends on m(w): 
we ignore this subtlety also. 

Within these terms the essential points are these: the leading term in (23) at w = w, 
has the real part 

f (g (R) - l+n- '6 (R) )cosm(w)k0 .  RRe F(x,x';w,):BQdR; (27) 

we use the previous notation for g(R). The term in (g(R)- 1) combines with the Lorentz 
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field term in (26) to provide precisely the incoherent part of the shift in (18). The 
(incoherent) Lamb shift is here given by 

e2x& j Re F(x, x';  w,):BBb(x-x ' )  dx'. 

however. It formally reduces to the long time limit of the neoclassical dynamical shift 
of Stroud and Jaynes (1970). The pseudoboson model here disagrees with the quantum 
theory (Bullough and Caudrey 1971, Bullough 1973, Ackerhalt et a1 1973). The real 
part of the remaining integrals in (23) appears to be providing three-body incoherent 
shifts of the same general type as (27) presumably associated with the shift of the excited 
state : the mode function cos mk, . (R + R') appears with these. The remaining two-body 
term appears to be an approximation to a contribution of the Casimir-Polder (1948) 
retarded pair interaction which is known (Bullough 1969) to shift the ground state. 
An important feature of the shift of this state alone, however, is that it is extensive and 
is linear in I/ or N (Bullough 1969). In contrast the one particle excitations shift in 
(18) is 0 (1 )  in the large bracket and is not extensive-presumably because one particle 
only is excited. The Lamb shift there is extensive however. 

Next we notice (23) has an imaginary part and there is a 'radiation rate'. The 
incoherent rate associated with transitions IiN, - ) N +  1) -, [ ) N ,  - 3 N )  is seen from 
(1.1 la)  to be precisely 

ro + n2e2xi,h- j (g(R)- 1) Im F(x, x'; w J : M  dR. (29) 

The corresponding rate between phased Dicke states I f N ;  -$N + 1 ; k )  and I f N ,  - i N )  
is 

r,+n2e2x&h-' (g(R)-1) ImF(x,x';w,):ririexp{ik.(x-x')) dR. (30) 

Likewise the rate between phased Dicke states IfN, - ) N +  1, U ;  k )  and IiN, - 3 N )  
can be seen from comparison with ( I .  19b) to be precisely 

( N  - 1)- ( N  - i)r, -n2e2x;,h- j ( g ( R ) - l ) I m  F ( x , x ' ; w , ) : B B e x p { i k . ( x - x ' ) }  dR 

(31) 
and is dominated by the term in To. In the transition (30) the outgoing photons have 
wavevectors in the direction I of k ;  in (31) the outgoing photons change R .  However 
from - ) N +  1 ; k )  only (30) is possible. Because of the invariance of (g(R)- l )F  
under R x - x' -, - R the mode function can be replaced by cos k . (x - x') = cos k . R. 
The rate from the leading term in (23) is actually 

i 

(g(R) - 1) exp(im(w)k, . R) Im F(x, x' ; 0,) :dB dR 

The factor $ is to be expected in the resonance width. Otherwise (32) coincides with 
(30), with the identification k = m(o)k , ,  as we expect. 

There is a curious aspect of super-radiance associated with (32): the rate described 
by it is intensive (O(1) in N )  but the fluorescence described by it is extensive. This can 
easily be seen by observing that T E 2wc-' Im(m(w)) is the extinction coefficient for 
the intensity of the mode with wavevector m(w)ko emitting scattered photons of frequency 
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w. This is directly related to the number of photons per second of this frequency scattered 
from unit volume which is Z,r/ho : I ,  is essentially the initial intensity of the mode in V. 
The total number of such photons leaving the volume V per second is then VZ,?/hw. 
From (32) and (25) this is proportional to 

1 (g(R)-  1) exp(imk, . R) Im F(x, x’; a,) dR 

The extra factor Vn compared with (32) means that the incoherent fluorescence is super- 
radiant in the same way that (Lila), for example, is super-radiant when the excitation 
number m N 0 (allowing for introduction of the mode function, (1.11~) coincides with 
(33) up to a factor a, when but only when m 1: 0). Indeed (compare Bullough 1970b) 
if we recognize the ‘1’ in ( g ( R ) -  1) as a consequence of isolation of the coherent part 
we see that when the N atoms in V are condensed to occupy a region small compared 
with a wavelength the fluorescence goes as N 2  rather than N.  The total fluorescence is 
always proportional to the input intensity I ,  of the excited pulse. 

The ‘coherent part’ is of course the coherent transmission of intensity in the direction 
of k,. A resonant mode with w = w, does not have wavenumber k, however. Its 
wavenumber is m(w,)o,c- and is determined by the dispersion relation (25).  Apparently 
in consequence (since this is where the mathematics develops differently from the 
resonant radiation rate theory of I) the coherent rate from the slab is proportional to 
the area of the slab and the input intensity I , .  It is not extensive (proportional to 
N = n V )  and it does not increase linearly (like (1.25)) with the width c of the slab?. 

The theory of refractive index just sketched appears to describe the one problem 
in which a phased Dicke state Ir, m ;  k )  can be explicitly excited by an incident ‘pulse’ 
and the problem solved essentially exactly. The arguments of this section show that 
the state excited is the state l$N, -3N + 1 ; k) wherek is fixed in magnitude and direction 
by the frequency and direction of an incident plane wave. They show that the excitation 
process is an essential part of a proper physical description of the excitation of this 
state and show moreover that perturbation theory (which does not distinguish k from 
k, on resonance) is not sufficient adequately to describe the propagation of the coherent 
part ofthe radiation. It is difficult to determine at  this stage what features ofthis dielectric 
theory will survive in the super-radiance region. There is a close correspondence between 
the one particle excitation region m = -$N+ 1 and the regions of larger m because 
the photon propagator F performs directly comparable functions for all values of m. 
But the m N 0 region is a nonlinear region and in this region pulses with resonant 
carriers satisfying the free field dispersion relation k ,  = w,c-’ are possible (eg McCall 
and Hahn 1969). 

We now look at  the m 1: 3N region where the pseudoboson theory of the amplifier 
could apply. It is important to notice that there is a profound dissymmetry between the 
two pairs of states l$N, - $ N )  with 1$N, -3N + 1) and I$N, 3 N )  with l$N, $N - 1) 

t According to (1.25) the rate from I f N ,  -fN + 1 ; k , )  is (on resonance) 6nr ,nk;3x(fk ,c )  = 4ne2x&h- ‘nk,c 
and the intensity isO(A-’) where A is the area of the slab. It is therefore negligible compared with the driven 
coherent intensity which is I ,  corrected only by transmission and reflexion coefficients at the two surfaces of 
the slab. In the super-radiant region m z 0 (1.25) shows that the rate from I fN,  m ;  k,,) to I fN,  m -  1 ; k , )  
is Nne2xi,h-’nk,c and the intensity is ne2x&h-’k,n2c2. I t  is interesting to note for comparison that the 
driven intensity in the pseudoboson theory (m U - i N )  is created by electric fields scattered by a dipole field 
proportional to na (where a is given by (24)): it  might appear that in this very different region of m the driven 
intensity is then proportional to n2 also ; but summation of the coherent contributions from the dipole fields 
eliminates this n2 dependence. 
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and thus, by implication, with the pseudoboson theories for the attenuator and the 
amplifier. From (21) the pseudoboson theory for the attenuator applies to the amplifier 
with a ( o )  (which depends on -2"-') changed in sign. This changes the sign of the 
real energy shift so that the resonance shifts to 

hwi = h a ,  + e2x& (g(R) - 1) Re F(x, x' ; 0,) : lili cos(m(w,)k, . R) dR 

The Lamb shift based on (28) is neoclassical and aIso changes sign. In other respects 
(34) agrees identically with the shift of the energy spacing between I ) N , ) N )  and 
I)N, 3N - 1 ; k )  providing m(w,) = 1. 

However, pseudoboson theories of this type exclude the damping and this is appar- 
ently not symmetric. The radiative rate between l#V, -;N+ 1 ; k )  and IiN, - $ N )  
is precisely (30) and no other transitions are possible : the fluorescence width is therefore 
(32) as found. But the radiation rate out of the states 1)N, 3 N )  is precisely N T ,  and not 
just? (30) because of the ( N  - 1) additive rates of the form (31). The rate from l)N, ) N )  
to l )N,  i N  - 1 ; k )  is certainly (30) and agrees with (32) whilst the pseudoboson theory 
ofthe amplifier also predicts a fluorescence width (which is adamping width) which is(32). 

Thus we have found that in addition to the transition l)N, ) N )  to \ ) N ,  )N  - 1 ; k )  
in which matter states may take on the wavevector k ,  there are the transitions (31) which 
take the same wavevector k but which may change the direction of the outgoing photon 
direction from k .  These mean that the total rate is NT,-independent of k as it surely 
should be-and the radiation is both isotropic and independent of the sample geometry. 
It is intuitive now that the pseudoboson theory of the amplifier is a correct description 
of the coherent part associated with the driving frequency w resonant or not ofan external 
field ; then within linear theory there must be added the spontaneous emission NT, 
which is O(N)  compared with (30). The linear theory is then unstable and evolves 
rapidly out of the linear regime : thus the pseudoboson theory of the amplifier misses 
an essential feature. 

It seems appropriate to conclude from this that it cannot be correct to develop a 
theory of super-radiant emission from an extended totally inverted dielectric in terms 
of a single wavevector k whatever the sample geometry. Equation of motion methods 
indicate the same feature but the relative significance of different k in this theory is not 
yet determined. 

Some of the results of these two papers seem intuitively obvious; but our purpose 
in investigating the perturbation theory in depth is to exhibit them explicitly and as 
far as possible quantitatively. We cannot add to the results in the text of this paper, 
part 11, by summarizing them here. The main conclusions of the paper are summarized 
in the abstract to it. 

Appendix 

The radiation rates calculated in both paper I and this paper, 11, depend on the imaginary 
part of the integral 

Z(k, k,) = 2 e 2 x ~ , h - 1 V - 2  Jv dx I", dx'F(x, x'; w,):lili exp{ik . (x-x')). 

t As shown in I individual rates with m + m- 1 and -m+ 1 + - m  are identical. 
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The two important cases were k = 0 (k is the magnitude of k )  and k = k, w,c-l. 
The case k = 0 occurs for rates between simple Dicke states Ir, m) ; the case k # 0 
occurs for transitions between phased Dicke states I T ,  m ; k )  (we sometimes used k ,  
for the vector k in I and do so again whenever we need to emphasize that k is the matter 
wavevector as opposed to an outgoing photon wavevector) ; the case k = k, in particular 
is the case of resonant transitions between phased Dicke states also preserving k. 

The energy shifts treated in this paper, 11, depend on the real part of the integral 
Z(k, ks). There is a difficulty in interpreting the complex valued integral within the 
context of the perturbation theory of these two papers which we now elucidate. 

The integral Z(k, k,) is invariant under k + -k .  To see this interchange x and x’ 
and observe that F(x, x’; w,) is invariant under the interchange. If  the orders of integra- 
tion are now reversed Z(k, k,) is transformed to I (  - k ,  k,). It follows that Z(k, k,) is equally 

W, k,) = 2e2x&V-’h J v  dx J dx’F(x, x’; w,):titi cos{k . (x-x’)). (A.2) 
V ’  

Either (A.l) or (A.2) may be evaluated by using Green’s theorem to evaluate the 
integral over (say) x’ first. The steps are first to get (from (A.l) for example) the result 
(and compare (11.10)) 

[ dx’F(x, x‘ ; 0,) exp( -ik . x’) dx’ 
J v ,  

exp(ik,)x - x‘l) 
= $tUexp(-ik.x)+(VV+k,ZU) exp( - i k . x’) dx’. (A.3) 

The argument is that the integral over x’ is conditionally convergent so that a vanishingly 
small sphere centred on x must be extracted from the region V’ of integration. The 
tensor operator is then transferred outside the integral at the expense of the additional 
term $,U exp(-ik.x) (the ‘Lorentz field’ term). Once the operator is outside the 
integral the region V’ can be closed up because the remaining integral is well defined. 

The ‘Lorentz field’ term contributes tnVC/-’2e2x&h-’ to the integral I(k, k,). As 
noted below (11.10) we classify this term as part of the ‘incoherent’ shift (it is certainly 
real). We do not consider it further in this appendix. 

We evaluate the remaining part of (A.3) for the parallel-sided slab 

-=$ 1 6 z < +c, x 2 + y 2  < R2 
where R -+ m. We consider only the case in which k lies along the z axis : for definiteness 
we suppose it in the positive z direction. The integral is evaluated in the refractive index 
theory (Bullough 1962,1970a). The case in which k is not parallel to the z axis has been 
treated by Darwin (1924) also within refractive index theory and is reported in Born 
and Wolf (1959). 

(VV + kf U) 1 exp(ik,lx - x’l) exp(ik . x’) dx’ 

From Bullough (1962, 1970a) we have (with R = Ix- x’l) 

V ’  

474k: U - kk) (VV + k,2 U) - - exp(ik . x) + 

x (Jxexp(ik.x’) dS.V{(expik,R)R-’} 

k2 - k; k2 - kf 

-(exp ik,R)R- d S ,  V exp(ik . x’) . 1 (‘4.4) 
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The surface integral is taken over the surface C of the slab considered to be simply the 
surfaces z = -$c, z = +$c. The contribution from the surface 121 < i c ,x2+y2  = R 2  
is neglected as a diffraction pattern correction to the coherent processes (compare 
Bullough 1962, appendix 1 in particular). 

The surface integral proves to be (Bullough 1970a, equation (2.10)) 

- 2x exp{ -$(k - k,)c) exp ik,z(k, + k)k; ' 
-27c exp{ +$i(k+ k,)c) exp -ik,z(k,-k)k;'. ('4.5) 

Note that, although (A.l) (at least) has the single wavevector k up the positive z axis, 
(A.5) has wavevectors kk,  both up and down the z axis: there is a 'reflected' wave. 

Since, by assumption, ri is orthogonal to the z axis, the term in kk exp(ik . x).in (A.4) 
does not contribute to I(k, k,). Such a contribution is in any case possible only from 
longitudinal rather than transverse waves. The result (A.4) now allows us to perform 
the integration over x and, with the Lorentz field term discarded, the result is 

4xk: 2nik, 1 - expj - ic(k - k,)) I(k, k,) = 2e2x&h- 'I/- ' ~ { k2 - k f + T (  (k- kJ2 

(A.6) 
2nik, 1 -exp{ +ic(k+k,)) +-( C (k + kJ2 

From this we find the imaginary and real parts 

(A.7a) 
sin2{$(k-k,)c) + sin2{$(k+ k,)c) 

$c(k - kJ2 $c(k + k,)' 
Im(Z(k, k,)) = 4e2x&h-'I/-' 

Re(I(k, k,)) = 2e2x&h-1V-1{---( 4xkf 2nk, sin c(k - k,) - sin c(k + k,) 
k2-kf  c (k-kJ2 (k+k,)' 

It will be noticed that the results (A.6) and (A.7) are all invariant under k -, -k  in 
agreement with the analysis from (A.l) to (A.2). 

In the case when k = 0 we now have 

Re(Z(0, k,)) = 8xe2x&h- ' I/- ' ( - 1 +- si;,tsc). 

(A.8a) 

(A.8b) 

The first of these is identically 9 for the same slab exhibited in (1.17~); the second is 
the shifting term which yields the coherent shift for the slab in a simple Dicke state 
Ir, m) exhibited in equation (12) of this paper 11. (The shift i(4xn)e2x& is related to a 
longitudinal shift depending on the square of the 'plasma frequency' CO: (Bullough 
1969)) 

In the case when k = k, (resonance case) we have 

Im(I(ks, k,)) = 4e2x~,k,h-'V-' ( 2  l c  +SI (A.9a) 

Re(l(k,, k,)) = 2xe2x~,Zt-'V-'k,c-'sin 2k,c. (A.9b) 

The expression (A.7b) is not defined when k = k, and we have defined it as the limit 
k -, k,; since (A.74 is invariant under k + - k this is also the limit k -, - k,. 
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The result (A.9a) is not the result which leads to (1.25). It leads in fact to 

( ;N+m)($N-m+l )  1 sin’ k,c 
6~T,nk,- - k,c + - ~ 

rcoll  = N (: 4 k , c  
(A.lO) 

The result (A.9b) is not the result evaluated from equation (11.17) when k = k,. 
The reason is that because I(k, k,) is invariant under k -, - k  it is evaluated with 

an integrand which contains both a ‘transmitted’ and a ‘reflected’ wave. Physically 
this makes complete sense since the total radiation rate from Vcannot depend on whether 
waves with wavevectors k or -k  transmit. However the actual direction of this emission 
does depend on the choice of k or -k .  In evaluating (1.25) by the route sketched in the 
paper I we have to evaluate 

where k, is the magnitude of the incident wavevector and k refers to outgoing photons. 
There is an ambiguity about the product 6(kx)6(k,)6(k - k,) since this is 

But if the integral is to be invariant under k -, - k  we need to interpret this as 

(A.12) 

precisely, and then instead of (1.25) we get (A.lO). This now means that photons leave 
the slab in the two directions normal to the slab with, however, different probabilities. 
It is still true that this coherent emission is in the direction normal to the slab only 
which is then parallel or antiparallel to the direction of the wavevector k , .  

In the case of a resonant pulse moving with wavevector k ,  of magnitude k, in the 
sample it might however be argued that the radiation rate is associated with the coherent 
transmission of energy by the pulse. In this case we need the result that radiation rates 
are in the direction of k , .  We achieve this result on resonance by deliberately choosing 
the expression 

(A. 13) 

instead of (A.12). 
In the one case where the problem of the excitation of a phased Dicke state by an 

incident pulse is soluble, namely the excitation of ItN, -fN + 1 ; k )  in refractive index 
theory there are no difficulties. Refractive index theory (pseudoboson theory) is an 
all order perturbation theory : it selects an infinite (but incomplete) set of virtual processes 
from the perturbation theory. It shows that an excitation with wavevector k ,  propagates 
with that vector : the propagator F carries the mode function exp(ik, . x‘) to exp(ik, . x). 
Associated with this is a propagation of intensity in the medium with wavevector k ,  
also. However, the radiation out of the region into a region without matter occurs 
from both surfaces of the slab if this is the choice for V, and more generally it occurs from 
all parts of the surface of V(a1though in this case the matter excitation cannot be labelled 
by a single wavevector k,). The failure of conservation of energy this surface emission 
implies is averted by the fact that it is necessary to excite the excitation by a free field 
incident from outside. 

The perturbation theory of these two papers is not capable of this degree of sophisti- 
cation. For simplicity we have therefore imposed the condition that coherent resonant 

WX)6(k,)4k - k,) = WX)~(k,)6(kZ - k,) 
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radiation occurs solely in the direction of the incident resonant wavevector k ,  by, for 
example, choosing (A.13) rather than (A.12) for the slab. It should however be realized 
that if a system can be placed in a phased Dicke state Ir, m ;  k, ) ,  and the excitation 
mechanism immediately switched off, the state Ir, m ;  k , )  radiates from (in the case of 
the slab) both surfaces and will then evolve accordingly. The method of excitation used 
by Brewer and Shoemaker (1971) seems closely to approach this desideratum. 

The argument presented in the texts of both papers therefore uses the following : 

2xk, 2nks sin c(k - k,) 
Re(Z(k, k,))  = 4e2x&h- ' V -  ' 

k - k ,  c (k-k,)' 

(A. 14a) 

(A.14b) 

On resonance these reduce to 8 e 2 x ~ , h - ' V - ' ( ~ k , c )  in agreement with (1.25) and to zero 
(in agreement with (11.17)) respectively. The results for k = 0 are unchanged and are 
just (A.8a) and (A.8b) respectively. The reader should have no difficulty in recalculating 
the initial rates and shifts appropriate to a slab placed initially in the phased Dicke 
state Ir, m ;  k , )  if he requires them. The arbitrary choices (A.14) rather than (A.7) in no 
way affect the conclusions of the two papers and simplify their presentation. 
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