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Perturbation theory of super-radiance
I1. Cooperative and non-cooperative level shifts
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Department of Mathematics, University of Manchester Institute of Science and Technology,
Manchester M60 1QD, UK

Received 22 November 1972, in final form 7 March 1973

Abstract. We extend the perturbation theory of super-radiant emission to derive a number
of results on the level shifts of N atom systems. These also divide into ‘coherent’ and
‘incoherent’ parts. The incoherent part divides further into a generalized Lamb shift which
is not cooperative, and an interatomic term which is. The former proves to be the only shift
which can depend on the presence of ambient free photons. These results for the generalized
Lamb shift support the view that a dynamical neoclassical theory of the Lamb shift is
unacceptable. The theory is compared with the pseudoboson theories of linear dielectrics.
The pseudoboson theory of an inverted dielectric (the ‘amplifier’) should be intrinsically
unstable unlike the pseudoboson theory of the refractive index which is concerned with
the ‘attenuator’.

1. Introduction

In part I (Saunders and Bullough 1973, to be referred to as I) we showed that the radiation
rates from extended samples prepared initially in the ‘simple’ Dicke states labelled by
r. m had natural coherent and incoherent parts I',,, and I';,.. The label r is the co-
operation number introduced by Dicke (1954): m = (N, —N_) where N, are the
numbers of two-level atoms in their upper (lower) states. Both the rates I',, and T,
are cooperative but reduce substantially in extended systems. We also displayed
comparable results for the ‘phased’ Dicke states labelled by r, m and a wavevector k4.
We have checked these order e? results for the radiation rates by calculating the complex
energies of the system to this order. The real parts of these energies can also be separated
into coherent and incoherent parts in a natural way; but only the shifts due to inter-
actions between separated atoms cooperate. We indicate the results.

2. The complex energy shifts

For extended samples in simple Dicke states |r, m)> we find the following generalization
of the Feynman (1961) expression for the self-energy of the electron (compare also the
all order in e? result for the ground state energy of a molecular fluid given by Bullough
1969):

AE = ——h—_Trf dwf dxf dx’
4ri o v v

x {(n+ D(Fx, x"; 0) . TT(x, x; 0)—cc)+n(Flx, x'; w) . TTx, x"; w)—cc)}. (1)
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Super-radiant level shifts 1361

In this expression k = wc™ ! and n, is the occupation number for ambient photons with
wavenumber k : for simplicity this is supposed to be isotropic, that is the same for all
directions k. The photon propagator F is given by equation (1) of I. The matter
propagator TT is the time-ordered propagator

1
N —_ -1
Mix, x';0)= —h zs: wls_w+i(5+w,s+w+i6

Ip(x)ls <slp(x>. 2
It applies to a system of N atoms each with an arbitrary number of levels:

N
nx) = 3 p%(x—x),
i=1
the total dipole operator; |I> is the unperturbed state of energy E,, |s) is any one of the
complete set of unperturbed states labelled by s and of energy E,, w,, = h~ '(E,—E)).
As usual d is an infinitesimal of positive sign.

There is a natural complex energy obtainable from (1). This is just one half of (1)
as it is written when the complex conjugates (cc’s) in it are dropped. Then there is a
natural radiation rate which is —2#~! times the imaginary part of this shift. However,
there is an ambiguity in the choice of imaginary parts of the integral : we can for example
take Re F. TT¥ or —Re F*. M from the bracket multiplied by n, in (1). The correct
choice is motivated by the conditions (a) that we want a radiation rate, that is a rate of
increase of photons (b) that the emission term in (n, + 1) increases the number (positive
rate) and that the induced absorption term in n, decreases it (negative rate). The
prescription above has this property as case (i) below, for example, shows. Thus we
can identify the total imaginary part obtained this way as I',,,, the total radiation rate
when the atomic system is in the state |I).

For N two-level atoms the uncoupled system is in general degenerate : for example,
the set of N, = (m+4iN) atom excitations is N!/N,!N_! degenerate (observe
N, +N_ = N). Appropriate states for degenerate perturbation theory are the simple
Dicke states |r, m) for small samples and the phased Dicke states |r, m; k) for trans-
lationally invariant systems. In what follows we shall investigate level shifts for both
sets of states. Since we now restrict the calculation to two-level atom systems,

N
B(x) = exod Y 005(x —x)

i=1

exactly as in equation (3) of I1.
We find the following:
(i) N atoms on the same site. The emission rate is

Tem = Do, + Dr+m)(r—m+1), (3a)
the absorption rate is (rate of increase of photons)

Lpps = =T r—m)(r+m+1) (3b)
and the total radiation rate is

I =To2m m+(r+m@r—m+1)}. (3¢)
Ifno free photons at frequency w, are available, T',,, reduces to the spontaneous emission

T Later we use the notation (1.3) for this, for example.
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rate (1.9); if photons at frequency w, are available the spontaneous emission is coherent
(that is cooperative) but the total of the induced processes is not.
The (real) energy level shift is

AE = —2mAEjg (4a)
where
e’xd © 1 1
AER = S{2P 3 d AEg, 4b
BT 3ncd J;, e ws+w+ws—w @+t (4b)
and AEj is the Bethe (1947) level shift
2 w? [m.c?
AEg = gezx%s?m( hws) (4¢)

providing the integral in w is cut off at the Compton frequency. The quantity AEj is
the generalized Lamb shift for the two-level atom reported by Bullough and Caudrey
(1971) obtained by rather different methods. It also agrees with the perturbation theory
of Knight (1972). Theresult(4a)showsthat the Lambshiftisnot cooperativeor coherent:
in this it shows a significant difference from the spontaneous emission.

(i) Two atoms on different sites. In the Dicke states |1, +1) the shifts are +2AF5.
In the symmetric (+) and antisymmetric (— )} Dicke states the shifts are respectively

AE = Fe?xi,ReF(x,, x,; w,): il
= F2ke?x2 {j_,(k,RU+1j_,(k, RYBRR— U)}: aa. (5)

In this R = x; —x, and R is a unit vector along R: the j, are spherical Bessel functions
diverging as R™" at the origin. These results agree with those of Stephen (1964) even
though n, # 0: the energy shift does not depend on the presence of free photons at this
order in e and will not do so at higher orders as the discussion in (iii) below makes plain.

Note that the single particle Lamb shifts have cancelled : these constitute the shift
AE = 2mAEjy of (i) with m = 0. The correct value of (5) when x; = x, is therefore zero
and thelimit x, — x, isnot defined. Inthe physicalsituation overlap becomes important
before x, = x,.

The radiation rates are

(e, + DT £2e*x3h™ 1 Im Fx,, x,; w,): ) (6)

from the Dicke state |1, 1) to states |1,0) and |0,0). The total rate when the atoms are
in the state 1,1 is (n,,+1)["y. The rate from |1,0) to |1, —1) is (6) with the positive
sign. The rate from |1,0) to |1, 1) is the positive sign in

—n (To£2e*x3h~ 1 Im F(x, x,; ) d4). N

The total radiation rate when the atoms are in the state |1, 0) is just the bracket with the
plus sign in (6): it does not depend on n,,. The total radiation rate when the system is
in the state |0, 0) is just the bracket with the minus sign in (6) which does not depend
onn, . Whenn, =0, the rates are spontaneous rates downwards only and agree with
(L7

(iii) N atoms on different sites. There is a rate downwards which multiplies (1.7)
by (n,+1); there is a rate upwards which multiplies this by —n,_ with m also changed
to —m. These rates describe the Ar = 0 transitions. The rates (1.19) with Ar = +1
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generalizein thesame way. Theanalysisintocoherent and incoherent partsisunchanged.
In particular the radiation rate from the state |3N, 3N is precisely (n, + 1)NT,.

The energy shifts are of considerable interest. A general result is that the shift of
the Dicke state |[r, m> withr = 1N is

GN+mGN—m+1)+GN +m+1)3N —m)

AE = —%ezxés(

N2
_GN+mEN+m=1)+GN —m—1)GN —m)
NI(N-1)
x (nz f dx f dx'g(R) Re F(x, ¥’ ,) :ﬁﬁ) —2mAE]. (®)
14 V'

AEj is the generalized Lamb shift given by (4b). Note that only this depends on the
presence of free photons. Hence the interparticle propagator is precisely F(x, x'; )
whether there are free photons or not. This result is to be expected since F is the Green
function for the time Fourier transformed operator Maxwell wave equation and must
be independent of the initial states (compare Bullough 1973, § 1): on the other hand the
operator self-field which is capable of yielding both the spontaneous emission and
Lamb shift correctly is not carried by this photon propagator (cf Bullough 1973 and
remarks by (26) below).

Notealso that the generalized Lamb shift is not cooperative whilst the shift depending
on Re F certainly is. This cooperative shift vanishes for the top and bottom states
I4N, £1N> and is symmetric in m. The generalized Lamb shift is the only shift in the
top and bottom states and is antisymmetric in m. In the limit in which all atoms occupy
the same site the limit of the shift in terms of Re F is undefined and should be rejected
as spurious as we noted already in case (ii): the key point is that atoms cannot overlap
and this is described in (8) by g(R) which vanishes as R — 0.

On the other hand since Re Fis long range and g(R) — 1 as R — o it is necessary to
split this shift into ‘coherent’ and ‘incoherent’ parts by splitting the integral in (8) as
follows:

nzf dxf dx'g(R) Re F(x, x'; w,): dit
14 Vv’
= nsz(g(R)—l) ReF(x,x';w,):44dR
+n2ff dx dx’' Re F(x, x'; w,): 4. 9)
vVyy

The first integral on the right side is obtained by appeal to the fact that its value does not
depend on x except for a surface layer of points x within about a correlation distance
of the surface of V. This is the ‘incoherent’ shift. The remaining ‘coherent’ part depends
explicitly on the form of V.

First of all the integral over x’ in the ‘coherent’ part double integral is undefined
for points x’ close to x. It is therefore defined as the conditionally convergent integral
obtained by extracting a small sphere of vanishingly small radius about x. The argument
is already familiar from refractive index theory (Rosenfeld 1951, Born and Wolf 1959,
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Bullough 1968). It follows that this integral is

exp(ik x —x'|)

dx’. (10)
Ix —x'|

gV+ f dx(VV+ka):ﬁﬁf
3 v v
The term $zV is equivalent to the effect of a Lorentz dielectric cavity field and shifts
the energy appropriately : we shall assign it to the ‘incoherent’ part of the shift for in
this way we can make a comparison with refractive index theory in the linear regime.
The double integral when evaluated for the slab of width ¢ and axis normal to 4,
the direction of the atomic dipole x matrix elements, reduces to

sin k¢
ke

s

—4nV+4nV (1

(with the understanding that ¥V = Ac and that the cross section is very large). The
details of the calculations leading to both (10) and (11) are given in the appendix to this
paper. With these results the total shift for the slab is thereforet

AE - ”%ezxés((%N+m)(%N—m-+—1)+(§N—m+1)(§N—m)
N
_GN+mGEN+m=1)+GN-—m—1)GN —m)
N(N-1)
8n sin ke "
X —?n+4nn o +nf(g(R)—1)Re F(x,x ;w,): 4@ dR
—2mAEg. (12)

The cooperative part of the shift is extensive, that is of order N, only for m ~ 0. For
m = 0 precisely

N
AE = —Xezx(z)s

8nn +dmn sin k.c
3 ke

s

+nf(g(R)—1)Re F(x,x’;cos):ﬁﬂdR) (13)

with terms O(1) neglected. The cooperative part of the shift vanishes for m = 3N
as noted. For m = +iN T 1 the cooperative shift is O(1) whilst the Lamb shift is ex-
tensive:

3 k.c

s

8 in k
AE = _ezxgs(__ﬁn+4nnsm sC-l—nf(g(R)—l)Re F(x,x’;a)s):ﬂﬁdR)

T(N—2)AE}. (14)

The energy spacings Fhw, (say) between the perturbed states N, +iNF1) and
AN, +iN) are

Fho, = Fho,+2AE;—ex3,

x —§7£n+47rnSin ks
3 ki

s

+nf(g(R)—1)Re F(x,x';w,):d@ dR)|. (15

t Compare Friedberg et al (1971).
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There is an analogous result for the spacing between the phased Dicke states
AN, +iN—1;k> and 3N; +3N>:

GN+m)(GN—m+1)+GN-m+1)GN —m)

AE = —%ezxcz,s(

N
_GN+mGN+m—1)+GN—m—1)GN —m)
N(N-1)
X 4?nn-k-n J.(g(R)— )Re F(x,x"; w,):@cosk . RdR
+inVh(e*x3)" ! Re {I(k, ks)}) —2mAEg. (16)

The quantity I(k, k,) is evaluated in the appendix to this paper by the methods used in
refractive index theory : the region V is taken to be the slab —4c < z < 4c with k along
the slab axis and # orthogonal to this. There is a difficulty associated with waves
reflected from the surface z = $c (when & is along the positive z axis) which is analysed
in this appendix. Within a prescription deliberately chosen to eliminate reflected waves
the real part of I(k, k) proves to be given by

Amnk,  4mnk sin c(k — k)

k—k, ¢ (k—k)? a7

$nV2h(exo) ™% Re {I(k, k,)} =

and this determines the magnitude of the coherent part of the level shift. In the case of
a resonant pulse described by excitation by the Dicke state |r, m; k) the quantity (17)
is, however, undefined and we then define it as its limit as k — k,. In this case the
coherent part of the shift vanishes since the limit of (17) does: it does not vanish if
reflected waves are included, however, and the correction due to this can be deduced
from the appendix: we ignore this correction here. With this understanding the shift
(16) reduces to the incoherent shift there, and in particular the analogue of (15) for the
energy spacings adjacent to the top and bottom states becomes

Fho, = Fho,+2AE;—e*x3,

X (?rﬁn f (g(Ry—1)ReF(x,x"; w,):dlicosk,. RAR). (18)

An essentially identical result can be obtained in linear refractive index theory as we
now show.

3. Connections with linear theory

It is well known that linear refractive index theory is equivalent to assuming that atoms
behave as oscillators of natural frequencies equal to their excitation frequencies. These
excitation frequencies are excitations from the ground state. The theory is equivalent
to restricting the whole system of N atoms to single particle excitations. A linearly
independent set of these N states can be labelled by distinct wavevectors k. These states
are those created and annihilated by operators analogous to the operator of (1.22)
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now normalized to create and annihilate normalized single atom excitations. These
operators are

0.(k) = —=Y exp(Fik . x)o?. (19)

We can suppose N so large that k can be chosen as any vector. The operators (19) satisfy
the commutation relations

[0, (k). o_(k)] = exp{ —ik—Kk') . x;}c®. (20)

zlwe
=

i=1

The expectation value in the Dicke states |r, m)> has the ensemble average

2 X . 2
=Y (rmloflrmy ) S = () S 21
N i=1 ave N ave

The expectation value in the Dicke state |r, m; ko> has the same ensemble average and
the result is independent of k,. The right hand side of (21) is O(2m/N) in terms of the
argument developed in I. For m = —4N +1 the ensemble average of the expectation
value of the commutator is — . + O(N ~!). To this extent the ¢ , (k) are boson operators.
Similarly for m = $N —1 the ¢, (k) are boson operators; but note now that o_(k)
(and not ¢, (—k)) creates a pseudoboson with momentum #k and this pseudoboson
consists of one particle de-excitations taken with reference to the fully inverted state.
There are thus at least two pseudoboson theories which are those in which transitions
take place between the ground state XN, —3N) and states of one particle excitations
or take place between the fully inverted state |2N, N) and states of one particle de-
excitations. We shall call these pseudoboson theories for the ‘attenuator’ and for the
‘amplifier’ respectively. Refractive index theory is normally concerned with the
attenuator but can apparently be extended to include the amplifier.

Since the usual refractive index theory is concerned with one particle excitations
above the ground state we can expect that the shift of the resonance frequency in that
theory will be close to or even identically equal to the frequency +w, in (18). There is
however a significant difference between refractive index theory and the theory of the
N atom system considered so far. The phased Dicke states 4N, —4N+1;k) are
approximate eigenstates of the coupled system and are approximate normal modes for
one particle excitations labelled by their wavevectors k. However within linear theory
the exact normal modes of the coupled matter photon system are modes labelled by
k of definite frequency w(k) determined by k. In the case of a finite system of volume V
an external field of wavenumber wc™?! excites a particular one of these modes with
wavenumber m(w)wce ™! :m{w) is defined to be the refractive index and, since m(w)w = ck
this is an implicit relation for (k). At the same time the surface of V plays a subtle role.
It largely extinguishes the external field inside V according to the optical extinction
theorem of Ewald (1912) and has the effect of refracting the wavevector inside Vaccording
to Snell’s law. This spatially coherent behaviour has the effect of eliminating the
coherent part of the shift in (16), that is the part depending on (17): indeed one should
include the reflected wave in (17) (see appendix) and it then eliminates this also by
generating the appropriate reflected waves at the surfaces of V. In this theory a unique
k is thus excited inside V by a system of waves with definite wavevectors k, outside V;
k is preserved therefore and the incoherent part of the shift contains the mode function
exp(ik . x).
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We find (cf Bullough 1968) that the refractive index m(w) satisfies the dispersion
relation

4nnow)

1 —4ana(w) — na(w)R(w)’ (22)

mi(w)—1 =
The quantity R(w) is a cluster expansion of which the leading terms have the form

(f (g,(R)— 1+ n"~'5(R)) exp(im(w)k, . R)iit:F(x, x'; w)dR

+ na(w) f J‘ (23(R, R')—g,(R)g,(R)) exp{im(w)k, . (R+ R);
xi.Flx,x;w).Fx,x";0).4dRdR’
+ o) f g,(R)yd.F(x,x'; w).F(x', x;w). #dR) ; (23)

2,(R) is the two-atom correlation function previously called g(R) and defined in (I.10);
g3(R, R) is an analogous three-atom correlation function; the vector &, has magnitude
ko = wc™! and is in a direction determined by that of the wavevector of the external
field. The quantity a(w) is the polarizability which for two-level atoms reduces to

aw) = 2e2x3h " 'ofw? —w?) L (24)
The form (24) allows us to rationalize {22) up to two-body correlations in the form

8nne’xgwh ™!

2w)—1 = 25
() w? —ow? —$nne’x3 wh ™! —2e*x3 wh nR(w) @3)

As long as the shift is small enough the resonance occurs at
o, ~ w,~3nne*xih~ ' —e*xih” 'nR(w,) (26)

which is then valid up to two-body correlations only. The expression (23) includes
three-body correlations explicitly and has indeed been worked to all orders of correlation
(Bullough and Hynne 1968, Bullough et al 1968). Up to three-body correlation (23)
diverges at w = w, because «(w) diverges there. Thus it is necessary to rationalize by
an extra factor (w? —w?) and the shift (if this is small) can be obtained as the root of a
quadratic in (@, — w).

There is the difficulty that all the terms multiplying a(w) in (23) depend mildly on
the surface of V: this has a significant effect in the theory of fluorescence (Bullough and
Hynne 1968, Bullough et al 1968), but we shall ignore this awkward problem here.
The resonance is in principle also complicated by the fact that R(w) depends on m(w):
we ignore this subtlety also.

Within these terms the essential points are these: the leading term in (23) at = o,
has the real part

f (g(R)—1+n"'5(R)) cos m(w)ky . R Re F(x, x'; w) i dR;; 27

we use the previous notation for g(R). The term in (g(R)~ 1) combines with the Lorentz
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field term in (26) to provide precisely the incoherent part of the shift in (18). The
(incoherent) Lamb shift is here given by

e2x2, f Re F(x, x'; @) : #@d(x — x') dx’, (28)

however. It formally reduces to the long time limit of the neoclassical dynamical shift
of Stroud and Jaynes (1970). The pseudoboson model here disagrees with the quantum
theory (Bullough and Caudrey 1971, Bullough 1973, Ackerhalt et al 1973). The real
part of the remaining integrals in (23) appears to be providing three-body incoherent
shifts of the same general type as (27) presumably associated with the shift of the excited
state: the mode function cos mk, . (R + R’) appears with these. The remaining two-body
term appears to be an approximation to a contribution of the Casimir-Polder (1948)
retarded pair interaction which is known (Bullough 1969) to shift the ground state.
An important feature of the shift of this state alone, however, is that it is extensive and
is linear in ¥V or N (Bullough 1969). In contrast the one particle excitations shift in
(18) is O(1) in the large bracket and is not extensive—presumably because one particle
only is excited. The Lamb shift there is extensive however.

Next we notice (23) has an imaginary part and there is a ‘radiation rate’. The
incoherent rate associated with transitions AN, —iN+1> - §N, —4N) is seen from
(I.11a) to be precisely

[y +n2e*x3h™? f (g(R)—1)Im F(x, x"; w,):4d dR. (29)

The corresponding rate between phased Dicke states [SN; —iN+1;k) and iN, —iN>
is

[o+n2e’x3 h™? J. (g(R)—1)Im F(x, x'; w,) :dik exp{ik . (x —x')} dR.  (30)

Likewise the rate between phased Dicke states 3N, —iN+1,a;k> and N, —iND
can be seen from comparison with (I.19b) to be precisely

(N—1)"Y(N = 1)I'p —n2e?x2h f (g(R)— 1) Im F(x, x'; ,): & exp{ik . (x—x)} dR
(31)

and is dominated by the term in I'y. In the transition (30) the outgoing photons have
wavevectors in the direction & of k; in (31) the outgoing photons change k. However
from (N, —3N+1;k) only (30) is possible. Because of the invariance of (g(R)— 1)F
under R = x—x' - — Rthemodefunctioncanbereplacedbycosk.(x—x') = cosk . R.
The rate from the leading term in (23) is actually

i (Fo +2e2x3h™n f (g(R)—1) exp(im(w)ky . R) Im F(x, x'; w,): Gt dR). (32)

The factor } is to be expected in the resonance width. Otherwise (32) coincides with
(30), with the identification k = m(w)k,, as we expect.

There is a curious aspect of super-radiance associated with (32): the rate described
by it is intensive (O(1) in N) but the fluorescence described by it is extensive. This can
easily be seen by observing that t = 2wc ™! Im (m(w)) is the extinction coefficient for
the intensity of the mode with wavevector m(w)k, emitting scattered photons of frequency
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w. This is directly related to the number of photons per second of this frequency scattered
from unit volume which is I,t/hw: I, is essentially the initial intensity of the mode in V.
The total number of such photons leaving the volume V per second is then VIyt/hwm.
From (32) and (25) this is proportional to

Vn (FO +2e2x3h™ n f (g(R)— 1) exp(imky . R) Im F(x, x'; w,) dR]. (33)

The extra factor Vn compared with (32) means that the incoherent fluorescence is super-
radiant in the same way that (I.11a), for example, is super-radiant when the excitation
number m ~ 0 (allowing for introduction of the mode function, (I.11a) coincides with
(33) up to a factor i, when but only when m ~ 0). Indeed (compare Bullough 1970b)
if we recognize the ‘1’ in (g(R)—1) as a consequence of isolation of the coherent part
we see that when the N atoms in V are condensed to occupy a region small compared
with a wavelength the fluorescence goes as N2 rather than N. The total fluorescence is
always proportional to the input intensity I, of the excited pulse.

The ‘coherent part’ is of course the coherent transmission of intensity in the direction
of ky. A resonant mode with w = @, does not have wavenumber k, however. Its
wavenumber is m(w )w,c ~ ! and is determined by the dispersion relation (25). Apparently
in consequence (since this is where the mathematics develops differently from the
resonant radiation rate theory of I) the coherent rate from the slab is proportional to
the area of the slab and the input intensity I,. It is not extensive (proportional to
N = nV)and it does not increase linearly (like (1.25)) with the width c¢ of the slab+.

The theory of refractive index just sketched appears to describe the one problem
in which a phased Dicke state |r, m; k> can be explicitly excited by an incident ‘pulse’
and the problem solved essentially exactly. The arguments of this section show that
the state excited is the state |5N, —iN +1; k) where k is fixed in magnitude and direction
by the frequency and direction of an incident plane wave. They show that the excitation
process is an essential part of a proper physical description of the excitation of this
state and show moreover that perturbation theory (which does not distinguish k from
k on resonance) is not sufficient adequately to describe the propagation of the coherent
part of the radiation. Itisdifficultto determineat this stage what features of this dielectric
theory will survive in the super-radiance region. Thereis a close correspondence between
the one particle excitation region m = —3N + 1 and the regions of larger m because
the photon propagator F performs directly comparable functions for all values of m.
But the m ~ 0 region is a nonlinear region and in this region pulses with resonant
carriers satisfying the free field dispersion relation k, = w,c™! are possible (eg McCall
and Hahn 1969).

We now look at the m ~ 1N region where the pseudoboson theory of the amplifier
could apply. Itisimportant to notice that there is a profound dissymmetry between the
two pairs of states |3N, —iN) with AN, —IN+1)> and IN,iN)> with IN,iN-1)

t According to (1.25) the rate from [3N, —3N +1:k,> is (on resonance) 6al"onk] 3x(3k.c) = dne?x3 h™ ‘nkc
and the intensity isO(4~ ) where A is the area of the slab. It is therefore negligible compared with the driven
coherent intensity which is I, corrected only by transmission and reflexion coefficients at the two surfaces of
the slab. In the super-radiant region m = 0 (1.25) shows that the rate from [$N,m; ko> to |3N,m—1;ky>
is Nne’x}h™'nk,c and the intensity is me?x2~ 'kn®c?. It is interesting to note for comparison that the
driven intensity in the pseudoboson theory (m = —$N) is created by electric fields scattered by a dipole field
proportional to na (where a is given by (24)): it might appear that in this very different region of m the driven
intensity is then proportional to »? also; but summation of the coherent contributions from the dipole fields
eliminates this n? dependence.
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and thus, by implication, with the pseudoboson theories for the attenuator and the
amplifier. From (21) the pseudoboson theory for the attenuator applies to the amplifier
with a(w) (which depends on —2mN ~') changed in sign. This changes the sign of the
real energy shift so that the resonance shifts to

- 2.2
ho, = hog+ e x5,

$nn+n f (g(R)—1)Re F(x, x'; w,) : @i cos(m(wyk,. R)dR]. (34)

The Lamb shift based on (28) is neoclassical and also changes sign. In other respects
(34) agrees identically with the shift of the energy spacing between |3N,3N)> and
I4N,4N —1; k) providing m(w,) = 1.

However, pseudoboson theories of this type exclude the damping and this is appar-
ently not symmetric. The radiative rate between 4N, —3N+1;k) and 3N, —iN)
is precisely (30) and no other transitions are possible : the fluorescence width is therefore
(32) as found. But the radiation rate out of the states |[{N, 1N is precisely NI'; and not
justt (30) because of the (N —1) additive rates of the form (31). The rate from 3N, N>
to |$N, 3N —1; k> is certainly (30) and agrees with (32) whilst the pseudoboson theory
ofthe amplifier also predicts a fluorescence width (which is a damping width) which is (32).

Thus we have found that in addition to the transition |$N,iN) to ¥N,IN—1;k)
in which matter states may take on the wavevector k, there are the transitions (31) which
take the same wavevector k but which may change the direction of the outgoing photon
direction from k. These mean that the total rate is NI (—independent of k as it surely
should be—and the radiation is both isotropic and independent of the sample geometry.
It is intuitive now that the pseudoboson theory of the amplifier is a correct description
ofthe coherent partassociated with the driving frequency w resonant or not ofan external
field ; then within linear theory there must be added the spontaneous emission NI
which is O(N) compared with (30). The linear theory is then unstable and evolves
rapidly out of the linear regime: thus the pseudoboson theory of the amplifier misses
an essential feature.

It seems appropriate to conclude from this that it cannot be correct to develop a
theory of super-radiant emission from an extended totally inverted dielectric in terms
of a single wavevector k whatever the sample geometry. Equation of motion methods
indicate the same feature but the relative significance of different k in this theory is not
yet determined.

Some of the results of these two papers seem intuitively obvious; but our purpose
in investigating the perturbation theory in depth is to exhibit them explicitly and as
far as possible quantitatively. We cannot add to the results in the text of this paper,
part II, by summarizing them here. The main conclusions of the paper are summarized
in the abstract to it.

Appendix

The radiation rates calculated in both paper I and this paper, 11, depend on the imaginary
part of the integral

Ik, k) = 2e2x(2,sh'1V‘2f dxj dx'F(x, x'; w,): #f exp{ik . (x —x')}. (A1)
14 v’

t As shown in I individual rates with m - m—1 and —m+1 - —m are identical.
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The two important cases were k = 0 (k is the magnitude of k) and k =k, = w,c™ .
The case k = 0 occurs for rates between simple Dicke states |r,m); the case k # 0
occurs for transitions between phased Dicke states |r,m; k> (we sometimes used k,
for the vector k in I and do so again whenever we need to emphasize that k is the matter
wavevector as opposed to an outgoing photon wavevector); the case k = k,in particular
is the case of resonant transitions between phased Dicke states also preserving k.

The energy shifts treated in this paper, II, depend on the real part of the integral
Itk,k;). There is a difficulty in interpreting the complex valued integral within the
context of the perturbation theory of these two papers which we now elucidate.

The integral I(k, k,) is invariant under £ -» —k. To see this interchange x and x’
and observe that F(x, x'; w,) is invariant under the interchange. If the orders of integra-
tion are now reversed I{k, k) is transformed to I(— k. k,). It follows that I{k, k,) is equally

Ik, k) = 2e*x2.V ™% J‘ dx f dx'F(x, x'; w,): @i cos{k . (x —x)}. (A.2)
14 V'

Either (A.1) or (A.2) may be evaluated by using Green’s theorem to evaluate the
integral over (say) x' first. The steps are first to get (from (A.1) for example) the result
(and compare (11.10))

f dx'F(x, x' ;) exp(—ik. x) dx’
.

explikjx —x1)

= 41U exp(—ik.x)+(vv+k§U)f xp(—ik.x)dx’. (A3)

v lx— x|
The argument is that the integral over x’ is conditionally convergent so that a vanishingly
small sphere centred on x must be extracted from the region V' of integration. The
tensor operator is then transferred outside the integral at the expense of the additional
term $nU exp(—ik. x) (the ‘Lorentz field’ term). Once the operator is outside the
integral the region V' can be closed up because the remaining integral is well defined.

The ‘Lorentz field’ term contributes $nV ~12e2x2 A~ ! to the integral I(k, k). As
noted below (11.10) we classify this term as part of the ‘incoherent’ shift (it is certainly
real). We do not consider it further in this appendix.

We evaluate the remaining part of (A.3) for the parallel-sided slab

-t <z < x*+y* < R?

where R — 2. We consider only the case in which & lies along the z axis : for definiteness
we suppose it in the positive z direction. The integral is evaluated in the refractive index
theory (Bullough 1962, 1970a). The case in which & is not parallel to the z axis has been
treated by Darwin (1924) also within refractive index theory and is reported in Born
and Wolf (1959).

From Bullough (1962, 1970a) we have (with R = |x —x/|)

(VV+k2U) f explikx —x'|) exp(ik . x") dx’
v

4n(k2U — kk)
= TEeE

X (f exp(ik . x') dS. V{(exp ik,R)R ™'}
z

(VV +k2U)

exp(ik . x)+ P

—({exp ik, R)R™ 1 dS. Vexp(ik . x)). (A.4)
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The surface integral is taken over the surface £ of the slab considered to be simply the
surfaces z = —ic, z = +1ic. The contribution from the surface [z] < 3¢, x*+y* = R?
is neglected as a diffraction pattern correction to the coherent processes (conipare
Bullough 1962, appendix 1 in particular).

The surface integral proves to be (Bullough 1970a, equation (2.10))

—2mexp{ —}itk—k,)c} exp ikz(k,+ k)k; !
—2mexp{ +iik+kyc} exp —ikgz(k,—k)k] . (A.5)

Note that, although (A.1) (at least) has the single wavevector k up the positive z axis,
(A.5) has wavevectors +k, both up and down the z axis: there is a ‘reflected” wave.

Since, by assumption, & is orthogonal to the z axis, the term in kk exp(ik . x)-in (A.4)
does not contribute to I(k, k,). Such a contribution is in any case possible only from
longitudinal rather than transverse waves. The result (A.4) now allows us to perform
the integration over x and, with the Lorentz field term discarded, the result is

drk? N Zﬂiks( 1 —exp{ —ic(k — ks)})

Ik, k) = Zezxgsh_lV_l{

k*—k2' ¢ (k—ky)?
+27zciks 1 —ex;()éilics;i<+ks)})} A6)
From this we find the imaginary and real parts
I
Re (I(k, k) = 2e*x35~ 'V~ 1{ kjn—kif - Z’Zk‘( Si?kcikk:)f J_ Si?kcikk:’)f ))} (A.7b)

It will be noticed that the results (A.6) and (A.7) are all invariant under k - —k in
agreement with the analysis from (A.1) to (A.2).
In the case when k = 0 we now have

-

Im(I(0, k,)) = 8e2xgsh-lv-1(s“i—kzcks—c) (A.8a)
27vs

Re(1(0, k) = 81rezxésh'1V‘l( —1 +512_1:sc ) (A.8b)

The first of these is identically 2 for the same slab exhibited in (I.17a); the second is
the shifting term which yields the coherent shift for the slab in a simple Dicke state
|r, m> exhibited in equation (12) of this paper II. (The shift {(4nn)e?x2, is related to a
longitudinal shift depending on the square of the ‘plasma frequency’ w? (Bullough
1969).)

In the case when k = k, (resonance case) we have

-
Im(I(k,, k,)) = de*x2 kp™ V™1 (%c + S"Z’kzcsc) (A9a)
Re(l (k. k) = 2ne*x3 ™'V "'k, ! sin 2kc. (A.9b)

The expression (A.7b) is not defined when k = k; and we have defined it as the limit
k — k,; since (A.7a) is invariant under k — —k this is also the limit k —» —k

s*
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The result (A.9a) is not the result which leads to (1.25). It leads in fact to

AN+m(EN-m+1 1 1sin® ke
. GN+ )(fv + )t,mronks_3(2,%%‘_1 kscs
The result (A.9b) is not the result evaluated from equation (11.17) when k = k,.

The reason is that because I(k, k,) is invariant under kK - —k it is evaluated with
an integrand which contains both a ‘transmitted’ and a ‘reflected” wave. Physically
this makes complete sense since the total radiation rate from ¥ cannot depend on whether
waves with wavevectors k or —k transmit. However the actual direction of this emission
does depend on the choice of k or —k. In evaluating (1.25) by the route sketched in the
paper I we have to evaluate

(A.10)

sin{3(ko —k)c} |

Jetko ) .

e?x2 h™ 'k, f dk(U —kk): aad(k )o(k,)o(k — ks)(

where k, is the magnitude of the incident wavevector and k refers to outgoing photons.
There is an ambiguity about the product d(k,)d(k,)d(k — k) since this is

O(k )k )k, k).
But if the integral is to be invariant under k - —k& we need to interpret this as
S(k )k )o(k —k,) = S(k )k, )3{o(k, —k)+d(k, +kJ)} (A.12)

precisely, and then instead of (I.25) we get (A.10). This now means that photons leave
the slab in the two directions normal to the slab with, however, different probabilities.
It is still true that this coherent emission is in the direction normal to the slab only
which is then parallel or antiparallel to the direction of the wavevector k.

In the case of a resonant pulse moving with wavevector k, of magnitude £, in the
sample it might however be argued that the radiation rate is associated with the coherent
transmission of energy by the pulse. In this case we need the result that radiation rates
are in the direction of k,. We achieve this result on resonance by deliberately choosing
the expression

instead of (A.12).

In the one case where the problem of the excitation of a phased Dicke state by an
incident pulse is soluble, namely the excitation of |3N, —$N+1; k) in refractive index
theory there are no difficulties. Refractive index theory (pseudoboson theory) is an
all order perturbation theory : it selects an infinite (but incomplete) set of virtual processes
from the perturbation theory. It shows that an excitation with wavevector k, propagates
with that vector: the propagator F carries the mode function exp(ik, . x') to exp(ik, . x).
Associated with this is a propagation of intensity in the medium with wavevector kg
also. However, the radiation out of the region into a region without matter occurs
from both surfaces of the slab if this is the choice for V, and more generally it occurs from
all parts of the surface of V (although in this case the matter excitation cannot be labelled
by a single wavevector k;). The failure of conservation of energy this surface emission
implies is averted by the fact that it is necessary to excite the excitation by a free field
incident from outside.

The perturbation theory of these two papers is not capable of this degree of sophisti-
cation. For simplicity we have therefore imposed the condition that coherent resonant
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radiation occurs solely in the direction of the incident resonant wavevector k, by, for
example, choosing (A.13) rather than (A.12) for the slab. It should however be realized
that if a system can be placed in a phased Dicke state |r,m; k,», and the excitation
mechanism immediately switched off, the state |r, m; k> radiates from (in the case of
the slab) both surfaces and will then evolve accordingly. The method of excitation used
by Brewer and Shoemaker (1971) seems closely to approach this desideratum.

The argument presented in the texts of both papers therefore uses the following:

sin? {(k - k,)c
%C(k - ks)z

2rk,  2mk, sin c(k —k)
k—k, ¢ (k—ky)?

On resonance these reduce to 8e?x3.h~ 'V ~(3k.c) in agreement with (1.25) and to zero
(in agreement with (I1.17)) respectively. The results for k = 0 are unchanged and are
just (A.84a) and (A.8b) respectively. The reader should have no difficulty in recalculating
the initial rates and shifts appropriate to a slab placed initially in the phased Dicke
state |r, m; ky» if he requires them. The arbitrary choices (A.14) rather than (A.7) in no
way affect the conclusions of the two papers and simplify their presentation.

Im(I(k, k,)) = 8e*x2 ki~ 1V 1 (A.140)

Re(I(k, k) = de?x2 h V1 (A.14b)
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